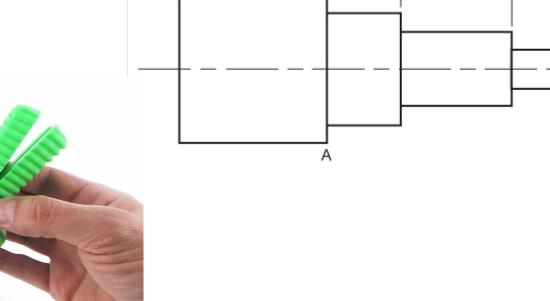


Workshop Flow

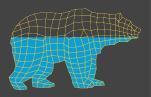
Overall flow of this workshop:

- 1. Design Phase
- 2. Pre-Print Phase
- 3. Printing Phase
- 4. Waiting
- 5. Post-Printing Phase
- 6. Maintenance + Troubleshooting

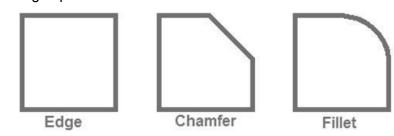
Failed Horizontal Overhangs


1. Design Phase

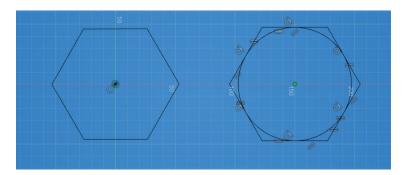
20±0.1 30±0.1 20±0.1

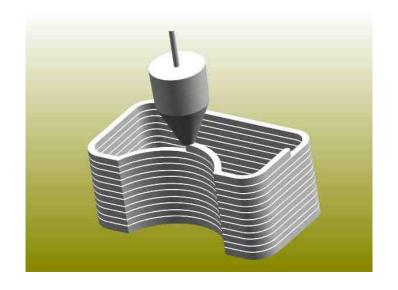

a. Tolerances

i. Why need them

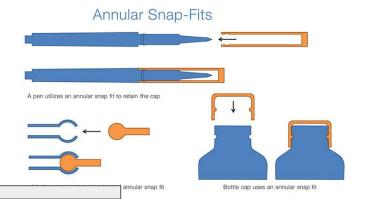


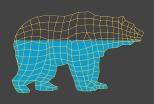
40±0.1-


Creative-Tools.co



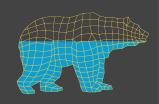
a. Part design tips


ii. **Ex:** Circle to create hexagon example (multiple ways to make same design, but there are more efficient ways)

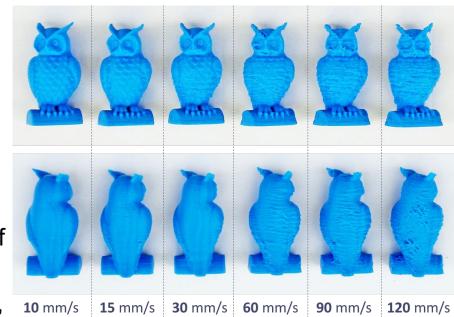


- a. Assembly and Part InteractionTips
 - i. Tolerances/constraints
 - ii. Snap fits
 - iii. Gears
 - iv. Fasteners

- a. Materials differences
 - i. Ex: Resin vs Thermoplastics vs flexible filament vs wood vs metals

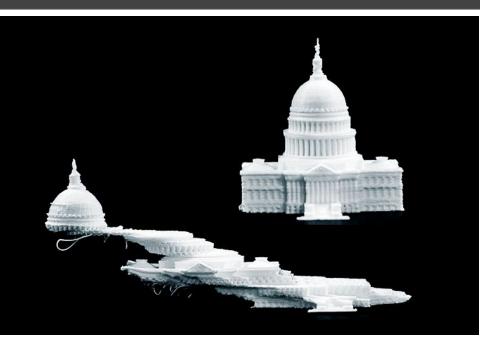


- Materials differences
 - Ex: Resin vs Thermoplastics vs flexible filament vs wood vs metals
- b. Filament types
 - Temperature/speeds for various filaments
 - ii. Methods to handle removal of filaments
 - iii. Methods to handle adhesion of first layer of filaments
 - iv. Heated bed vs non heated bed
 - v. **Ex:** PLA, ABS, PTEG, SLA, NinjaFlex



- a. Big 5 (Deep dive from week 4 workshop)
 - i. Layer Height
 - ii. Fill Density
 - iii. Print speed
 - iv. Print temperature
 - v. Supports
- b. Resolution
 - i. Qualitative vs Quantitative meaning of
 - ii. Differences across printers
 - iii. **Example:** Evaluating various printers,

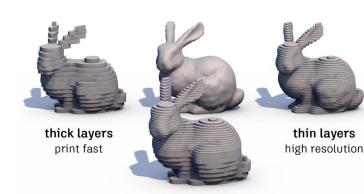
and their cost


- a. Thickness of parts
 - i. flexible parts using rigid plastic
 - ii. Infill strength curves
- b. Third party slicing software
- c. Overhangs (maximum and when to use supports)

90

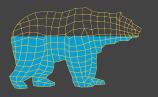
33

38

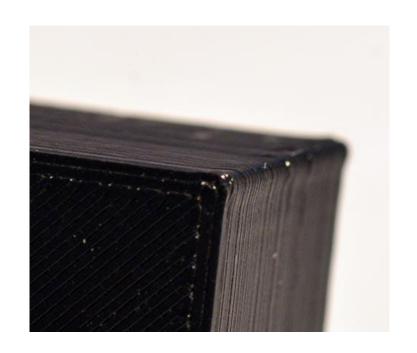

40

42

100

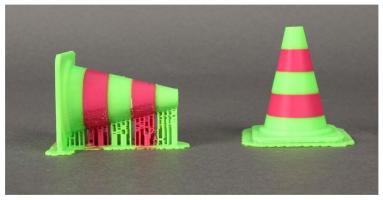

39

- a. Thickness of parts
 - i. flexible parts using rigid plastic
 - ii. Infill strength curves
- b. Third party slicing software
- c. Overhangs (maximum and when to use supports)
- d. Supports
 - CADing them rather than having the slicer generate i prosthetic arm good example
- e. Printer limitations
 - i. **Case Study:** Zeus vs Mod-T vs Robo3D
 - Other Campus printers
 - i. Locations
 - ii. Type of printers (SLA, FDM mainly),
 - iii. Who to talk to for access
 - iv. METAL PRINTER??????

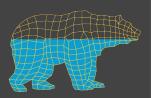

it		print fast					
	Strength				ĺ	Infill %	6
	[MPa]		10	30	50	70	80
		0.1	8	12	17	25	29
	Layer	0.15	9	14	20	28	33
	Height	0.2	10	15	21	30	35
	[mm]	0.25	10	15	22	31	37

0.3

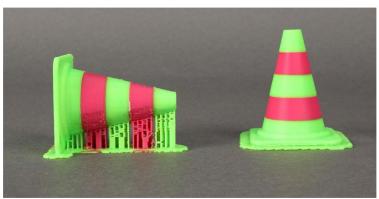
- a. Part design tips
 - i. Fillets and chamfers (removing sharp corners)
 - ii. **Ex:** Circle to create hexagon example (multiple ways to make same design, but there are more efficient ways)
 - iii. weak shear strength of FDM layers for long thin objects,
 - iv. multiple protrusions on flat surface without joining,



3. Printing Phase

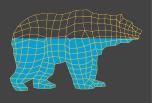

a. Printer tips

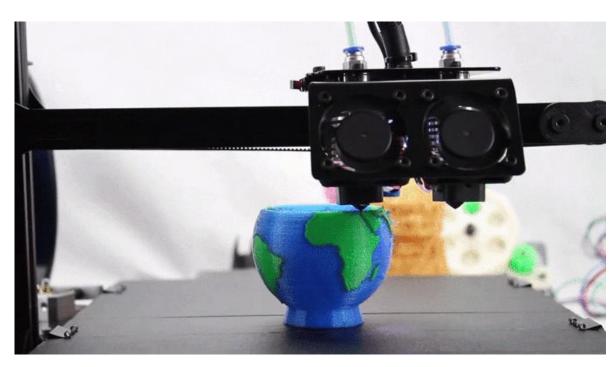
- i. Print direction
- ii. Part orientation (i.e. horizontal holes okay, less support is not necessarily better, etc).
- iii. Support orientation
- iv. 1st layer adhesion (Tape vs Glue for 1st layer)

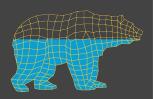


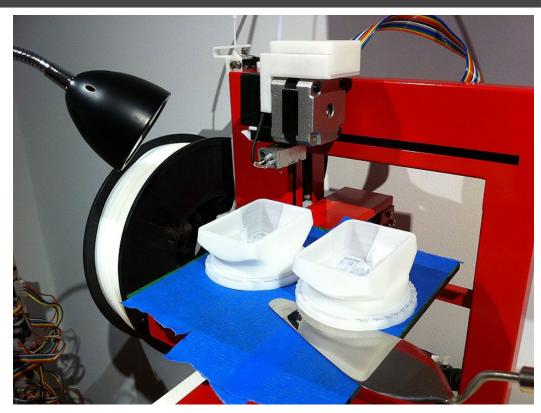


3. Printing Phase



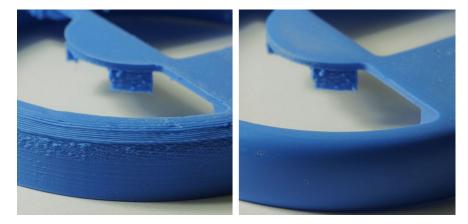

- a. Printer tips
 - Print direction
 - ii. Part orientation (i.e. horizontal holes okay, less support is not necessarily better, etc).
 - iii. Support orientation
 - iv. 1st layer adhesion (Tape vs Glue for 1st layer)
- b. Making sure the printer is ready for use
 - i. 3 things to check for:
 - 1. Is the printer on
 - 2. Is the filament in
 - 3. Will my part fit (part sliced and oriented properly

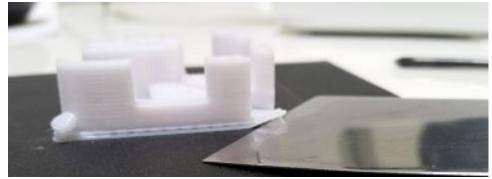

4. Waiting



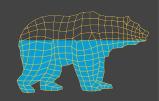
5. Post Printing Phase

- a. Print is done (successful/failed)
 - i. Removing parts from bed
 - 1. Do's and don't
 - ii. Making printer ready for next person to use
 - 1. Replacing blue tape

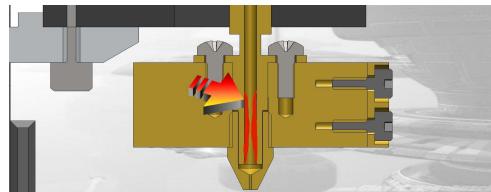


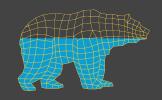


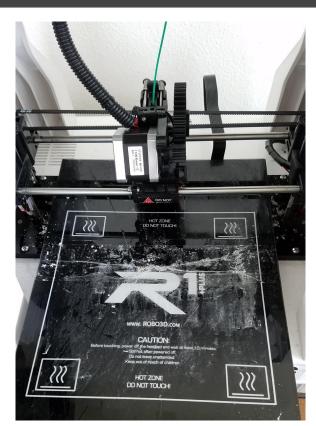
5. Post Printing Phase



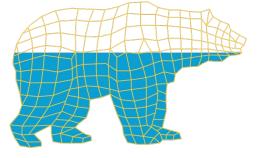
- a. Print is done (successful/failed)
 - i. Removing parts from bed
 - 1. Do's and don't
 - ii. Making printer ready for next person to use
 - 1. Replacing blue tape
- b. "Just do it in post" (making it looknice = the toughest part)
 - i. Cleaning parts
 - 1. Filing
 - Sandpaper


6. Maintenance + Troubleshooting


- a. Printer Maintenance
 - i. General cleaning procedures
 - ii. What parts break often and jams
 - iii. How to troubleshoot problems with printer
 - iv. Maintenance contacts
 - 1. Company
 - 2. Forums
 - 3. Lab manager Michael
 - 4. Ryan



6. Maintenance + Troubleshooting



- a. Oops, I broke something
 - It does cost an arm and leg (Ryan accepts donations)
 - ii. Make sure you are ok, do First Aid, CPR, MRI, corpus callosotomy
 - iii. Stop printer operations
 - iv. Turn off printer, make sure heated bed and/or extruder are turned off
 - v. Take steps to fix if known error and <u>you know how</u> <u>to</u>
 - vi. Contact people
 - 1. It's completely fine, happens all the time
 - 2. Better to let us know and have us teach you to fix the problem vs you freaking out

QUESTIONS?

Contact 3D4E: 3d4e.ucla@gmail.com

Contact Ryan: rpooon@g.ucla.edu

Contact James: <u>astemoi@ucla.edu</u>

Contact Quentin: Quentintruong@gmail.com

DESIGN. TINKER. PRINT.
3D FOR EVERYONE

